A kernel-based approach to overparameterized Hammerstein system identification

نویسندگان

  • Riccardo S. Risuleo
  • Giulio Bottegal
  • Håkan Hjalmarsson
چکیده

The object of this paper is the identification of Hammerstein systems, which are dynamic systems consisting of a static nonlinearity and a linear time-invariant dynamic system in cascade. We assume that the nonlinear function can be described as a linear combination of p basis functions. We model the system dynamics by means of an np-dimensional vector. This vector, usually referred to as overparameterized vector, contains all the combinations between the nonlinearity coefficients and the first n samples of the impulse response of the linear block. The estimation of the overparameterized vector is performed with a new regularized kernel-based approach. To this end, we introduce a novel kernel tailored for overparameterized models, which yields estimates that can be uniquely decomposed as the combination of an impulse response and p coefficients of the static nonlinearity. As part of the work, we establish a clear connection between the proposed identification scheme and our recently developed nonparametric method based on the stable spline kernel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind

Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...

متن کامل

A kernel-based approach to Hammerstein system identification

In this paper, we propose a novel algorithm for the identification of Hammerstein systems. Adopting a Bayesian approach, we model the impulse response of the unknown linear dynamic system as a realization of a zero-mean Gaussian process. The covariance matrix (or kernel) of this process is given by the recently introduced stable-spline kernel, which encodes information on the stability and regu...

متن کامل

Hammerstein-Wiener Model: A New Approach to the Estimation of Formal Neural Information

 A new approach is introduced to estimate the formal information of neurons. Formal Information, mainly discusses about the aspects of the response that is related to the stimulus. Estimation is based on introducing a mathematical nonlinear model with Hammerstein-Wiener system estimator. This method of system identification consists of three blocks to completely describe the nonlinearity of inp...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Hammerstein System Identification by a Semi-Parametric Method

A semi-parametric algorithm for identification of Hammerstein systems in the presence of correlated noise is proposed. The procedure is based on the non-parametric kernel regression estimator and the standard least squares. The advantages of the method in comparison with the standard non-parametric approach are discussed. Limit properties of the proposed estimator are studied, and the simulatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016